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Abstract

The first examples of the asymmetric ene-type spiro-cyclization catalyzed by cationic palladium(II) complexes with a
new PN-ligand bearing achiralgem-dimethyl oxazoline unit were demonstrated. Spiro-products were synthesized from ether
substrates with common, medium and large membered rings with high enantiomeric excesses in almost quantitative yields.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Asymmetric catalysis; Cyclizations; Enynes; PN-ligands; Palladium; Spiro

1. Introduction

The enantioselective spiro ring construction is an
important issue because many natural compounds
have chiral spiro centers[1,2]. Some examples of
catalytic spiro-cyclizations have been reported by
asymmetric intramolecular Mizoroki–Heck reactions
[3–7]. In spite of a similar but higher potential, tran-
sition metal-catalyzed ene-type carbocyclization has
never been applied to asymmetric spiro-cyclizations
[8–19].1 We have already reported that palladium(II)-
catalyzed ene-type cyclization proceeds quantitatively
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1 Precedent examples for ene-type spiro-cyclization catalyzed
by palladium are limited in achiral version to give only racemic
products (see[8]).

with excellent enantioselectivity generating a new
quarternary carbon center[20]. Herein, we wish to
report a highly enantioselective spiro ethers forma-
tion catalyzed by our cationic chiral palladium(II)
complexes with a new PN-ligand bearing achiral
oxazoline unit substituted by sterically demanding
gem-dialkyl groups.

2. Experimental

Typical procedure for palladium(II)-catalyzed spi-
ro-cyclization: thoroughly degassed dimethylsulfox-
ide (DMSO) (3.0 ml) was injected under argon into a
Pyrex Schlenk tube containing [(MeCN)4Pd](BF4)2
(6.6 mg, 0.0150 mmol) and (aS)-PN-ligand7 (16.0 mg,
0.0300 mmol), and this solution was stirred at room
temperature for 5 min. Then1 (0.300 mmol) and
formic acid (5.6�l, 0.150 mmol) were added, the
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tube was sealed with a screw cap. The mixture was
stirred at 100◦C. The reaction mixture was washed
with brine, and the ether-extracted organic layer was
evaporated in vacuo and the residue was purified
by short column chromatography (neutral silica-gel,
pentane/ether= 10/1) to afford (S)-2 and (S)-3.

High performance liquid chromatographic (HPLC)
analyses were conducted on a JASCO PU-980, LG-
980-02, DG-980-50, AS-950 and CO-966 instrument
equipped with model UV-975 spectrometers as an
ultra violet light; Chiral column were DAICEL-
CHIRALCEL AD-H, AS, OB-H, OD-H; peak area
were calculated by JASCO-BORWIN (Windows NT)
as an automatic integrator. Capillary gas chromato-
graphic (GC) analyses were conducted on a Shimadzu
GC-14B instrument equipped with FID detector by
using N2 (75 kPa) as a carrier gas; peak area were
calculated by a Shimadzu C-R6A as an automatic
integrator; chiral column were CP-Cyclodextrin-�-
2,3,6-M-19 (i.d. 0.25 mm× 25 m; CHROMPACK;
GL Sciences Inc.) and CP-Chirasil-Dex CB (i.d.
0.32 mm× 25 m; CHROMPACK; GL Sciences Inc.);
split ratio was 100:1.

2a: 1H NMR (300 MHz, CDCl3) δ 1.93 (m, 1H),
2.11 (m, 1H), 2.40–2.50 (2H), 3.61 (d,J = 8.4 Hz,
1H), 3.70 (s, 3H), 3.76 (d,J = 9.0 Hz, 1H), 4.74 (dd,
J = 17.7, 2.4 Hz, 1H), 4.94 (dd,J = 17.7, 2.4 Hz,
1H), 5.45 (dt,J = 5.4, 2.4 Hz, 1H), 5.63 (t,J =
2.7 Hz, 1H), 5.98 (dt,J = 6.0, 2.1 Hz, 1H).

3a: 1H NMR (300 MHz, CDCl3) δ 2.53 (s, 4H),
3.70 (s, 3H), 3.72 (s, 2H), 4.87 (d,J = 2.4 Hz, 2H),
5.68 (bs, 2H), 5.76 (t,J = 2.4 Hz, 1H).

2b: 1H NMR (300 MHz, CDCl3) δ 1.40–2.22 (6H),
3.50 (d,J = 8.4 Hz, 1H), 3.71 (s, 3H), 3.82 (d,J =
8.7 Hz, 1H), 4.70 (dd,J = 17.7, 2.7 Hz, 1H), 4.98
(dd, J = 17.7, 2.7 Hz, 1H), 5.30 (dm,J = 10.2 Hz,
1H), 5.67 (t,J = 2.4 Hz, 1H), 5.99 (dt,J = 10.2,
3.6 Hz, 1H).

3b: 1H NMR (300 MHz, CDCl3) δ 1.40–2.22 (6H),
3.63 (d,J = 8.7 Hz, 1H), 3.69 (d,J = 8.7 Hz, 1H),
3.71 (s, 3H), 4.82 (dd,J = 17.7, 2.7 Hz, 1H), 4.90
(dd, J = 17.7, 2.7 Hz, 1H), 5.68–5.80 (3H).

2c: 1H NMR (300 MHz, CDCl3) δ 1.59–1.85 (6H),
2.00–2.40 (2H), 3.52 (d,J = 9.0 Hz, 1H), 3.71 (s,
3H), 3.95 (d,J = 8.7 Hz, 1H), 4.72 (dd,J = 17.7,
2.7 Hz, 1H), 4.92 (dd,J = 17.7, 2.7 Hz, 1H), 5.32 (d,
J = 12.0 Hz, 1H), 5.72 (t,J = 2.7 Hz, 1H), 5.90 (dt,
J = 11.7, 5.7 Hz, 1H).

3c: 1H NMR (300 MHz, CDCl3) δ 1.20–2.40 (8H),
3.64 (d,J = 9.0 Hz, 1H), 3.71 (s, 3H), 3.75 (d,J =
9.3 Hz, 1H), 4.75–4.91 (2H), 5.67 (m, 1H), 5.70 (t,
J = 2.7 Hz, 1H), 5.93 (m, 1H).

2d: 1H NMR (300 MHz, CDCl3) δ 0.70–2.60 (10H),
3.53 (d,J = 8.7 Hz, 1H), 3.70 (s, 3H), 3.98 (d,J =
8.7 Hz, 1H), 4.69 (dd,J = 17.7, 2.4 Hz, 1H), 4.69 (dd,
J = 17.7, 2.4 Hz, 1H), 4.69 (dd,J = 17.7, 2.4 Hz,
1H), 4.91 (d,J = 11.7 Hz, 1H), 5.60 (dd,J = 12.0,
8.4 Hz, 1H), 5.71 (t,J = 2.4 Hz, 1H).

3d: 1H NMR (300 MHz, CDCl3) δ 0.80–2.40 (10H),
3.62 (d,J = 8.4 Hz, 1H), 3.70 (s, 3H), 3.75 (d,J =
8.7 Hz, 1H), 4.79 (dd,J = 17.7, 2.4 Hz, 1H), 4.88 (dd,
J = 17.7, 2.4 Hz, 1H), 5.73 (dt,J = 10.8, 8.4 Hz,
1H), 5.68 (t,J = 2.7 Hz, 1H), 5.85 (dt,J = 10.5,
8.1 Hz, 1H).

2e: 1H NMR (300 MHz, CDCl3) δ 1.00–2.20 (24H),
3.67 (d,J = 8.4 Hz, 1H), 3.70 (s, 3H), 3.84 (d,J =
8.7 Hz, 1H), 4.80 (d,J = 2.7 Hz, 2H), 5.33 (d,J =
15.9 Hz, 1H), 5.46 (dt,J = 15.3, 6.6 Hz, 1H), 5.69 (t,
J = 2.7 Hz, 1H).

3. Results and discussion

First, in PdII -catalyzed spiro-cyclizations, we em-
ployed bidentateC2-symmetric PP-ligand such as
(R)-SEGPHOS ((4,4′-bi-1,3-benzodioxole)-5,5′-diyl-
bis(diphenylphosphine))[21], that has heen found to
be so effective to substrates with acyclic olefin, for a
variety of cyclic allyl progargyl ethers1 under polar
conditions ([(MeCN)4Pd](BF4)2/DMSO) (Table 1).
However, reactions were rather slow, taking 72 h for
full conversion. Enantioselectivities were unexpect-
edly low (21–38% e.e.), although the common mem-
bered spiro-products were obtained in good yields.
Moreover, the olefin-migrations of the primary gen-
erated product2 occurred in all cases leading to the
secondary olefin regioisomer3.

Based on our mechanistic studies about the tran-
sition states for these C–C bond formation, we
have already devised bidentateC1-symmetric PN-
ligands having binaphtyl backbone[22].2 Therefore,
PN-ligands bearing a chiral oxazoline unit[23–28]
were investigated for substrate1c in PdII -catalyzed

2 PN-ligands have been known to have advantages to prevent
olefin-migrations in asymmetric Mizoroki–Heck reactions[29,30].
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Table 1
Enantioselective ene-type spiro-cyclization of 1,6-enyne ethers1 catalyzed by cationic PdII complex with (R)-SEGPHOSa

Entry Substrate Reaction time (h) Yield (%) (e.e. (%)b) Total e.e. value (%)

2 3

1 1a (n = 1) 72 35 (23) 21 23
2 1b (n = 2) 72 20 (8) 52 (27) 21
3 1c (n = 3) 16 0 (–) 99 (38) 38

a Reactions were carried out in thoroughly-degassed DMSO at 100◦C with 5 mol% of [(MeCN)4Pd](BF4)2 and 10 mol% of (R)-
SEGPHOS.

b The e.e. value were based on chiral GC and/or HPLC analyses.

Table 2
Enantioselective ene-type spiro-cyclization of 1,6-enyne ether1c catalyzed by cationic PdII complexes with chiral PN-liganda

Entry PN-ligand Yield (%) (e.e. (%)b) Total e.e. value (%)

2c 3c

1 (aS, R)-5a 22 (96) 77 (78) 82
2 (aS, S)-5b 32 (88) 65 (76) 80
3 (aS)-6 58 (61) 23 (27) 51

a Reaction were carried out in thoroughly-degassed DMSO at 100◦C with 5 mol% of [(MeCN4Pd)](BF4)2, 10 mol% of PN-ligand and
50 mol% of HCOOH.

b The e.e. value were based on chiral GC and/or HPLC analyses.
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Fig. 1. ORTEP representation and structual formula of the (S)-1-phenylethylamine salt ((R)-derivative (4) from (aR)-PN-ligands).

spiro-cyclizations. In sharp contrast to PP-ligand,
PN-ligands 5a and 5b having a tert-Bu oxazoline
unit were found to be effective to give the spiro-
product 2c with (S)-sense in excellent yields and
good enantioselectivities (over 80% e.e.) with olefin-
migrations (Table 2, entries 1 and 2). The abso-
lute configuration of2c was determined by X-ray
crystallographic analysis,3 as a chiral amine salt
of the corresponding carboxylic acid4 with (S)-1-
phenylethylamine. ORTEP drawings are shown in
Fig. 1. On the other hand, PN-ligand6 having no

3 2c was converted to the corresponding carboxylic acid4
through hydrolysis, and then crystallized as a diastereomeric salt
of (S)-1-phenylehtylamine in a CH2Cl2–hexane–AcOEt mixture
at room temperature. Crystal data for this salt in X-ray analysis:
formula C12H16O3·C8H11N, orthorhombic, space groupP212121

(#19), a = 14.205(2) Å, b = 19.760(3) Å, c = 6.735(3) Å, V =
1890.5(10) Å3, Z = 4, and D = 1.157 g/cm3. X-ray diffrac-
tion data were collected on a Rigaku AFC7R diffractometer with
graphite-monochromated Mo K� (λ = 0.71069 Å) at−20◦C and
the structure was solved by direct methods (SIR97). The final
cycle of full-matrix least-squares refinement was based on 2492
observed reflections(I > 3s(I )) and 226 variable parameters and
converged toR = 0.0447 andRw = 0.1358. Crystallographic data
(excluding structure factors) for the structure reported in this paper
have been deposited with the Cambridge Crystallographic Data
Center as supplementary publication no. CCDC-188150. Copies of
the data can be obtained free of charge on application to CCDC,
12 Union Road, Cambridge CB21EZ, UK (fax:+44-1223-336-
033; e-mail: deposit@ccdc.cam.ac.uk).

alkyl substituent in oxazoline unit showed poor enan-
tiomeric excess (total 51% e.e., entry 3). These results
imply that the center of chirality (R or S) at the 4-
position of the oxazoline isnot important but the
presence of sterically demanding alkyl substituent is
necessary to achieve higher enantioselectivity.

Finally, our effective (aS)-PN-ligand 7, doubly
substituted by methyl groups, was executed. For
7-membered ring1c, PN-ligand7 provided the corre-
sponding spiro-products2c and3c with higher enan-
tiomeric excess (total 84% e.e.) and in excellent yield
(Table 3, entry 3). Even for other membered rings,
spiro-cyclization proceeded successfully; as a total
value, 88% e.e. and 95% yield for 5-membered ring
1a (entry 1), 71% e.e. and 83% yield for 6-membered
ring 1b (entry 2). For1a with PN-ligand 7, olefin-
migration was prevented, so that enantio-enriched
2a was major product with isomeric3a. Medium 8-
membered ring substrate1d also cyclized successfully
in 84% e.e. and 94% yield (entry 4). For large ring
system of 15-membered ring1e, spiro-cyclization
proceeded successfully not accompanying with the
olefin-migration, to afford the single product2e in
83% e.e. and in almost quantitative yield (entry 5).4

4 In the presence of 50 mol% of HCOOH, side-product which
was reduced in acetylene unit to olefin was obtained in accompany
with the desired product2e. The presence of HCOOH retards the
olefin migrations in all cases.
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Table 3
Enantioselective ene-type spiro-cyclization of 1,6-enyne ethers
1 catalyzed by cationic PdII complexes with (aS)-gem-dimethyl
PN-ligand7a

Entry Substrate
(ring size)

Reaction
time (h)

Yield (%) (e.e. (%)b) Total e.e.
value (%)

2 3

1 1b (5) 3 88 (88) 7 88
2 1b (6) 22 63 (84) 20 (31) 71
3 1c (7) 3 13 (88) 78 (83) 84
4 1d (8) 6 33 (93) 61 (80) 84
5c 1e (15) 11 >90 (83) 0 (–) 83

a Reactions were carried out in thoroughly-degassed DMSO
at 100◦C with 5 mol% of [(MeCN)4Pd](BF4)2, 10 mol% of PN-
ligand 7 and 50 mol% of HCOOH unless otherwise noted.

b The e.e. value were based on chiral GC and/or HPLC anal-
yses.

c In the absence of HCOOH.

4. Conclusions

We have established highly efficient ene-type spiro-
cyclization of allyl propargyl ethers catalyzed by
cationic palladium(II) with a new PN-ligand bearing
achiral gem-dimethyl oxazoline unit. Wide scope of
spiro-compounds, from common to large membered
ether rings, were synthesized in high to excellent enan-
tioselectivities almost quantitatively. This is the first
example of the asymmetric ene-type spiro-cyclization
and of great potential for other ring formations in-
cluding heterocycles and carbocycles.
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